Core Function SPrintf
SPrintf( <format control>, <params> )
Contents |
Description
Returns a formatted string (similar to the C sprintf() function).
Parameters
format control
The format and flags to use (see Remarks).
This can be either a string or an array that will be converted into a string
params
Variables that will be output according to the "format control".
The variables can also be arrays with their own unique designated separator.
When using arrays you may have any/all/none of the following Keys (Case-Sensitive):
KEY WHAT IT DOES @Sep Allows you to define a separator for each element in the array to use @Begin Allows you to define a string to add to the beginning of each element in the array @End Allows you to define a string to add to the end of each element in the array
See example for more information.
If there is just one param and it is a full dictionary using keys/values only then it will treated very differently see example for dictionary stuff.
Return Value
Success: Return the formatted string according to "variable format" defined in the "format control" parameter.
Failure: Returns "" (blank string).
Remarks
As with all Sputnik functions Sprintf() is fully Unicode so you don't need to worry about such things.
If you wish to immediately print to the console rather than return a string you should see Printf( <format control>, <params> ).
Unlike AutoIt (And similar programs) there is no buffer overflow chance, each "variable" is not limited to any amount characters it can be as big as it needs to be (Because Sputnik handles the entire sprintf parsing/operation/printing etc internally and does not use DLLs or APIs to accomplish it.
If you want to have "%" in the format control you must enter "%%".
"variable format" is; %[flags] [width] [.precision] type
Width Specification
The second optional field of the format specification is the width specification. The width argument is a nonnegative decimal integer controlling the minimum number of characters printed. If the number of characters in the output value is less than the specified width, blanks are added to the left or the right of the values — depending on whether the – flag (for left alignment) is specified — until the minimum width is reached. If width is prefixed with 0, zeros are added until the minimum width is reached (not useful for left-aligned numbers).
The width specification never causes a value to be truncated. If the number of characters in the output value is greater than the specified width, or if width is not given, all characters of the value are printed (subject to the precision specification).
Type Specification
Type Variable type Output format b Integer/Float Binary number (Detects if it should use Integer or Float based on value type). B Long Integer/Float Binary number (Detects if it should use Integer or Float based on value type). d, i Integer Signed decimal integer. D Long Integer Signed decimal long integer. o Integer Unsigned octal integer. O Long Integer Unsigned octal long integer. u Integer Unsigned decimal integer. U Long Integer Unsigned decimal long integer. x Integer Unsigned hexadecimal integer, using "abcdef". X Integer Unsigned hexadecimal integer, using "ABCDEF". a Float Hexadecimal floating point in lowercase, using "abcdef". A Float Hexadecimal floating point in uppercase, using "ABCDEF". e Float Signed value having the form [ - ]d.dddd e [sign]ddd where d is a single decimal digit, dddd is one or more decimal digits, ddd is exactly three decimal digits, and sign is + or -. E Float Identical to the e format except that E rather than e introduces the exponent. f Float Signed value having the form [ - ]dddd.dddd, where dddd is one or more decimal digits. The number of digits before the decimal point depends on the magnitude of the number, and the number of digits after the decimal point depends on the requested precision. g Float Signed value printed in f or e format, whichever is more compact for the given value and precision. The e format is used only when the exponent of the value is less than -4 or greater than or equal to the precision argument. Trailing zeros are truncated, and the decimal point appears only if one or more digits follow it. G Float Identical to the g format, except that E, rather than e, introduces the exponent (where appropriate). p Pointer address Prints the pointer address in hex with a 0x prefix. P Pointer address Prints the pointer address in hex (UPPER CASE) with a 0x prefix. s String String. S String String (Will force Binary/Arrays etc to print as String). c Character A single character (ASCII). C Character A single character (UNICODE). V SV Interpret integer as Sputnik's standard integer type. n Nothing printed The corresponding argument must be a variable to be used. The number of characters written so far will stored in the variable provided.
Flag Specification
Flag Meaning Default ^ Format parameter index No explicit index An explicit format parameter index, such as 2^. By default Sprintf() will format the next unused argument in the list, but this allows you to take the arguments out of order and even use the same argument multiple times. See the examples below. ' Custom padding will replace the usual space/zero with No padding. a custom padding of your choosing. You must enter the custom padding character immediately after the ' for example %'# will cause # to become the custom character. This padding by default will left and right sides of the input as the width specifies. ` Custom left align padding will replace the usual space/zero No padding. that appear when you do a left alignment (or center) the custom character will appear visible on the right side after the item. Using a custom padding of your choosing. This is useful if you wish to use the usual custom padding on top of this padding to allow you to choose unique characters to surround both the left and right side of your input. You must enter the custom padding character immediately after the ` for example %`# will cause # to become the custom character ! Center align the result within the given field width. Center align. - Left align the result within the given field width. Right align. + Prefix the output value with a sign (+ or -) if the output value is of a signed type. Sign appears only for negative signed values (-). 0 If width is prefixed with 0, zeros are added until the minimum width is reached. If 0 and - appear, the 0 is ignored. If 0 is specified with an integer format (i, u, x, X, o, d) the 0 is ignored. No padding. Blank Prefix the output value with a blank if the output value is signed and positive; the blank is ignored if both the blank and + flags appear. No blank appears. # When used with the o, x, or X format, the # flag prefixes any nonzero output value with 0, 0x, or 0X, respectively. No blank appears. # When used with the e, E, or f format, the # flag forces the output value to contain a decimal point in all cases. Decimal point appears only if digits follow it. # When used with the g or G format, the # flag forces the output value to contain a decimal point in all cases and prevents the truncation of trailing zeros. Ignored when used with c, d, i, u, or s. Decimal point appears only if digits follow it. Trailing zeros are truncated.
Width Specification
width description (number) Minimum number of characters to be printed. If the value to be printed is shorter than this number, the result is padded with blank spaces. The value is not truncated even if the result is larger. * The width is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
Precision Specification
The third optional field of the format specification is the precision specification. It specifies a nonnegative decimal integer, preceded by a period (.), which specifies the number of characters to be printed, the number of decimal places, or the number of significant digits (see Table below). Unlike the width specification, the precision specification can cause either truncation of the output value or rounding of a floating-point value. If precision is specified as 0 and the value to be converted is 0, the result is no characters output, as shown below:
sprintf( "%.0d", 0 ); /* No characters return */
Specifiers
The length sub-specifier modifies the length of the data type. This is a chart showing the types used to interpret the corresponding arguments with and without length specifier (if a different type is used, the proper type promotion or conversion is performed, if allowed):
length d i u o x X f F e E g G a A c s p n (none) Int32 UInt32 Double Int32 String IntPtr Ref hh SByte Byte Ref h Int16 UInt16 Ref l Int32 UInt32 Float Char String Ref ll Int64 UInt64 Ref j Int64 UInt64 Ref z Int64 UInt64 Ref t Int64 UInt64 Ref L Double Ref
Some of the above are obsolete and may be removed later (hh, h, l, ll will stay forever though)
When you place a variable into the parameter and say the variable is a max size Int64 if you enter %hhd the variable size will be cut down to the the a byte you can use this as a form of casting instead of having to explicitly cast.
The "l" can be used to cast a show a double as if it was a float such as %ld similar to casting.
How Precision Values Affect Type
Type Meaning Default d, i, u, o, x, X The precision specifies the minimum number of digits to be printed. If the number of digits in the argument is less than precision, the output value is padded on the left with zeros. The value is not truncated when the number of digits exceeds precision. Default precision is 1. e, E The precision specifies the number of digits to be printed after the decimal point. The last printed digit is rounded. Default precision is 6; if precision is 0 or the period (.) appears without a number following it, no decimal point is printed. f The precision value specifies the number of digits after the decimal point. If a decimal point appears, at least one digit appears before it. The value is rounded to the appropriate number of digits. Default precision is 6; if precision is 0, or if the period (.) appears without a number following it, no decimal point is printed. g, G The precision specifies the maximum number of significant digits printed. Six significant digits are printed, with any trailing zeros truncated. s The precision specifies the maximum number of characters to be printed. Characters in excess of precision are not printed. Characters are printed until a null character is encountered.
Example
Before we begin
// Anything you can do in Printf you can return it as a string using Sprintf // Like so.. $value = sprintf("%%e = '%e'\n", 777); print($value); // Prints: 7.770000e+002
Format parameter index in this example we explicitly tell it to use parameter 2 where you would expect 1 to go and 1 where you would expect 2 to go
$value = sprintf('%2^d %1^d', 12, 32); print($value); // Prints // 32 12
Format parameter index in this example we explicitly use the same parameter in multiple formats
$value = sprintf("As Int '%1^d' As Hex '%1^#x' As Char '%1^c'\n", 12); print($value); // Prints // As Int '12' As Hex '0xc' As Char '♀'
Format parameter index of course everything still works such as padding
$value = sprintf("As Int '%1^6d' As Hex '%1^#-6x' As Char '%1^!6c'\n", 12); print($value); // Prints // As Int ' 12' As Hex '0xc ' As Char ' ♀ '
A basic example
$d = 5; $m = 11; $y = 1990; say sprintf("%02d/%02d/%04d", $d, $m, $y); // 05/11/1990
Example of using custom padding
$s = 'monkey'; $t = 'many monkeys'; printf("[%s]\n", $s); // standard string output printf("[%10s]\n", $s); // right-justification with spaces printf("[%-10s]\n", $s); // left-justification with spaces printf("[%010s]\n", $s); // zero-padding works on strings too printf("[%'#10s]\n", $s); // use the custom padding character '#' printf("[%'#-10s]\n", $s); // left-justification with custom padding '#' printf("[%10.10s]\n", $t); // left-justification but with a cutoff of 10 characters printf("[%'#10d]\n", 777); // use the custom padding character '#' printf("[%'#10g]\n", 777.42); // use the custom padding character '#' printf("[%'#-10d]\n", 777); // left-justification with custom padding '#' printf("[%'#-10g]\n", 777.42); // left-justification with custom padding '#' /* [monkey] [ monkey] [monkey ] [0000monkey] [####monkey] [monkey####] [many monke] [#######777] [####777.42] [777#######] [777.42####] */
Example of center alignment
// Normal spaces printf("[%!20d]\n", 1); printf("[%!20d]\n", 10); printf("[%!20d]\n", 100); printf("[%!20d]\n", 1000); printf("[%!20g]\n", 1.1); printf("[%!20g]\n", 10.2); printf("[%!20g]\n", 100.3); printf("[%!20g]\n", 1000.4); printf("[%!20s]\n", "The"); printf("[%!20s]\n", "Quick"); printf("[%!20s]\n", "Brown"); printf("[%!20s]\n", "Fox"); // Custom padding printf("[%'-!20d]\n", 1); printf("[%'-!20d]\n", 10); printf("[%'-!20d]\n", 100); printf("[%'-!20d]\n", 1000); printf("[%'-!20g]\n", 1.1); printf("[%'-!20g]\n", 10.2); printf("[%'-!20g]\n", 100.3); printf("[%'-!20g]\n", 1000.4); printf("[%'-!20s]\n", "The"); printf("[%'-!20s]\n", "Quick"); printf("[%'-!20s]\n", "Brown"); printf("[%'-!20s]\n", "Fox"); // Custom padding on left and right (different chars for each) printf("[%'>`<!20d]\n", 1); printf("[%'>`<!20d]\n", 10); printf("[%'>`<!20d]\n", 100); printf("[%'>`<!20d]\n", 1000); printf("[%'>`<!20g]\n", 1.1); printf("[%'>`<!20g]\n", 10.2); printf("[%'>`<!20g]\n", 100.3); printf("[%'>`<!20g]\n", 1000.4); printf("[%'>`<!20s]\n", "The"); printf("[%'>`<!20s]\n", "Quick"); printf("[%'>`<!20s]\n", "Brown"); printf("[%'>`<!20s]\n", "Fox"); /* [ 1 ] [ 10 ] [ 100 ] [ 1000 ] [ 1.10000 ] [ 10.2000 ] [ 100.300 ] [ 1000.40 ] [ The ] [ Quick ] [ Brown ] [ Fox ] [---------1----------] [---------10---------] [--------100---------] [--------1000--------] [------1.10000-------] [------10.2000-------] [------100.300-------] [------1000.40-------] [--------The---------] [-------Quick--------] [-------Brown--------] [--------Fox---------] [>>>>>>>>>1<<<<<<<<<<] [>>>>>>>>>10<<<<<<<<<] [>>>>>>>>100<<<<<<<<<] [>>>>>>>>1000<<<<<<<<] [>>>>>>1.10000<<<<<<<] [>>>>>>10.2000<<<<<<<] [>>>>>>100.300<<<<<<<] [>>>>>>1000.40<<<<<<<] [>>>>>>>>The<<<<<<<<<] [>>>>>>>Quick<<<<<<<<] [>>>>>>>Brown<<<<<<<<] [>>>>>>>>Fox<<<<<<<<<] */
Example of using a variable to choose padding size
$t = 'f'; printf("right-justified variable width (padded-zeros): '%0*c'\n", 10, $t); printf("left-justified variable width (padded-zeros): '%-'0*c'\n", 10, $t); printf("right-justified variable width (padded-custom): '%'#*c'\n", 10, $t); printf("left-justified variable width (padded-custom): '%-'#*c'\n", 10, $t); // right-justified variable width: ' f' // left-justified variable width : 'f ' // right-justified variable width (padded-zeros): '000000000f' // left-justified variable width (padded-zeros): 'f000000000' // right-justified variable width (padded-custom): '#########f' // left-justified variable width (padded-custom): 'f#########'
Example of printing integers and floats in hexadecimal
say "Hex of 32-bit Integer"; say sprintf('%x', @INT32_MAX); say sprintf('%x', @INT32_MIN); say "Hex of 64-bit Integer"; say sprintf('%llx', @INT64_MAX); say sprintf('%llx', @INT64_MIN); say "Hex of 32-bit Floating Point"; say sprintf('%a', 777.42); say sprintf('%a', -777.42); say "Hex of 64-bit Floating Point"; say sprintf('%la', 777.42); say sprintf('%la', -777.42); /* Hex of 32-bit Integer 7fffffff 80000000 Hex of 64-bit Integer 7fffffffffffffff 8000000000000000 Hex of 32-bit Floating Point 44425ae1 c4425ae1 Hex of 64-bit Floating Point 40884b5c28f5c28f c0884b5c28f5c28f */
Example %n
$text = "World !"; Printf("Hello%n %s\n%n", $val, $text, $val2); Printf("%%n at first check was %d\n", $val); Printf("%%n at second check was %d\n", $val2); // Prints // Hello World ! // %n at first check was 5 // %n at second check was 14
Example %p to print a memory address etc
$ptr = Alloc(500); Printf("Pointer: %p\n", $ptr); // Pointer: 0x06d5bda8 Printf("Pointer: %P\n", $ptr); // Pointer: 0x06D5BDA8 free($ptr);
Large example
$n = 43951789; $u = -43951789; // notice the double %%, this prints a literal '%' character Printf("%%d = '%d'\n", $n); //'43951789' standard integer representation Printf("%%e = '%e'\n", $n); //'4.395179e+07' scientific notation Printf("%%u = '%u'\n", $n); //'43951789' unsigned integer representation of a positive integer Printf("%%u <0 = '%u'\n", $u); //'4251015507' unsigned integer representation of a negative integer Printf("%%f = '%f'\n", $n); //'43951789.000000' floating point representation Printf("%%.2f = '%.2f'\n", $n); //'43951789.00' floating point representation 2 digits after the decimal point Printf("%%o = '%o'\n", $n); //'247523255' octal representation Printf("%%s = '%s'\n", $n); //'43951789' string representation Printf("%%x = '%x'\n", $n); //'29ea6ad' hexadecimal representation (lower-case) Printf("%%X = '%X'\n", $n); //'29EA6AD' hexadecimal representation (upper-case) Printf("%%+d = '%+d'\n", $n); //'+43951789' sign specifier on a positive integer Printf("%%+d <0= '%+d'\n", $u); //'-43951789' sign specifier on a negative integer $s = 'monkey'; $t = 'many monkeys'; Printf("%%s = [%s]\n", $s); //[monkey] standard string output Printf("%%10s = [%10s]\n", $s); //[ monkey] right-justification with spaces Printf("%%-10s = [%-10s]\n", $s); //[monkey ] left-justification with spaces Printf("%%010s = [%010s]\n", $s); //[0000monkey] zero-padding works on strings too Printf("%%10.10s = [%10.10s]\n", $t); //[many monke] left-justification but with a cutoff of 10 characters Printf("%04d-%02d-%02d\n", 2008, 4, 1);
If you are wondering how the hell to do a 64-bit signed integer
// Recommended way Printf("Int64 value is: '%D' ok\n", @Int64_Max); // Alternative Printf("Int64 value is: '%lld' ok\n", @Int64_Max);
If you are wondering how the hell to do a 64-bit unsigned integer
// Recommended way Printf("UInt64 value is: '%U' ok\n", @UInt64_Max); // Alternative Printf("UInt64 value is: '%llu' ok\n", @UInt64_Max);
Example of using arrays
$n = 777; $t = array(100, 200, 300, 400); Printf("Single value is '%d' but lets do an array of values '%d' cool huh?\n", $n, $t);
Example of using arrays with separator
$n = 777; $t = array(@Sep => "-", 100, 200, 300, 400); Printf("Single value is '%d' but lets do an array of values '%d' cool huh?\n", $n, $t);
Example of using arrays with separator but this time dont include the separator in the array
$n = 777; $t = array(100, 200, 300, 400); Printf("Array of values '%d'\n", [@Sep => "/"] . $t); // Original array is intact printr $t; // see // Prints // Array of values '100/200/300/400' // ARRAY // { // [0] => 100 // [1] => 200 // [2] => 300 // [3] => 400 // }
Large example with arrays
$ints = array(@Sep => "-", 100, 200, 300, 400); $floats = array(@Sep => "#", 100.2, 777.42, 133.77, 88.1); $strings = array(@Sep => "#", "One", "Two", "Three"); Printf("Ints '%d' \nFloats '%g' \nStrings '%s'\n", $ints, $floats, $strings);
Example using @Sep, @Begin and @End
$arr = array(@Sep => "\n", @Begin => "0x", @End => "<-- Hex yup", 0..50); Printf("Hex of the array\n%x\n", $arr);
More examples
Printf( "%+d\n", 42 ); # "+42" Printf( "%4d\n", 42 ); # " 42" Printf( "%04d\n", 42 ); # "0042" Printf( "%X\n", 0x1337f00d ); # "1337F00D"
Using an array as the format string
$arr = array("huey", "dewey", "louie"); say sprintf($arr); # 'huey dewey louie' $arr = array(10, 11, 12); say sprintf('%x', $arr); # 'abc' $arr = array(@Sep => " ", 10, 11, 12); say sprintf('%x', $arr); # 'a b c' $arr = array(@Sep => " ", 65, 66, 67); say sprintf('%c', $arr); # 'A B C' $arr = array(@Sep => '; ', 1, 2, 3); say sprintf('%02d', $arr); # '01; 02; 03'
Using an array as the format string with custom join
$arr = Join(array("huey", "dewey", "louie"),'-'); say sprintf($arr); # 'huey-dewey-louie'
Using an array (as a dictionary) as the format string
$arr = array("foo" => 1, "bar" => 2); say sprintf($arr); # 'foo 1 # bar 2' $arr = array("foo" => 1, "bar" => 2, "testingFooBar" => 3); say sprintf($arr); # 'foo 1 # bar 2 # testingFooBar 3'
Using an array (as a dictionary) as the format string with custom join
$arr = JoinKV(array("foo" => 1, "bar" => 2),"<BR>\n"); say sprintf($arr); # 'foo 1<BR> # bar 2'
Using an array (as a dictionary) as the only param
$arr = array("Apples" => 5, "Oranges" => 10); say sprintf('%s cost %d euros', $arr); # 'Apples cost 5 euros # Oranges cost 10 euros' // Of course you can still use the @Sep $arr = array(@Sep => ";", "Apples" => 5, "Oranges" => 10); say sprintf('%s cost %d euros', $arr); # 'Apples cost 5 euros;Oranges cost 10 euros' // Of course @Begin and @End are useable too $arr = array(@Begin => ">>>", @End => "<<<", "Apples" => 5, "Oranges" => 10); say sprintf('%s cost %d euros', $arr); # '>>>Apples cost 5 euros<<< # >>>Oranges cost 10 euros<<<' // Can use them all $arr = array(@Sep => ";", @Begin => ">>>", @End => "<<<", "Apples" => 5, "Oranges" => 10); say sprintf('%s cost %d euros', $arr); # '>>>Apples cost 5 euros<<<;>>>Oranges cost 10 euros<<<' $arr = array(@Sep => " -- ", "huey" => 1, "dewey" => 2, "louie" => 3); say sprintf('%s', $arr); # 'huey -- dewey -- louie' $arr = array(@Sep => " -- ", "huey" => 1, "dewey" => 2, "louie" => 3); say sprintf('%s(%d)', $arr); # 'huey(1) -- dewey(2) -- louie(3)' say sprintf("%s is %.3f AU away from the sun", "Earth", 1); # Prints "Earth is 1.000 AU away from the sun" say sprintf("%s is %.3f AU away from the sun", array("Earth" => 1)); # Prints "Earth is 1.000 AU away from the sun"
Yet another example
$n = 43951789; $u = -43951789; $c = 65; // ASCII 65 is 'A' // notice the double %%, this prints a literal '%' character Printf("%%b = '%b'\n", $n); // binary representation (32 bit size) Printf("%%B = '%B'\n", @Int64_Max); // binary representation (64 bit size) Printf("%%c = '%c'\n", $c); // print the ascii character, same as chr() function Printf("%%d = '%d'\n", $n); // standard integer representation Printf("%%e = '%e'\n", $n); // scientific notation Printf("%%u = '%u'\n", $n); // unsigned integer representation of a positive integer Printf("%%u = '%u'\n", $u); // unsigned integer representation of a negative integer Printf("%%f = '%f'\n", $n); // floating point representation Printf("%%o = '%o'\n", $n); // octal representation Printf("%%s = '%s'\n", $n); // string representation Printf("%%x = '%x'\n", $n); // hexadecimal representation (lower-case) Printf("%%X = '%X'\n", $n); // hexadecimal representation (upper-case) Printf("%%+d = '%+d'\n", $n); // sign specifier on a positive integer Printf("%%+d = '%+d'\n", $u); // sign specifier on a negative integer
Example of using %b to print the number in its binary form
Printf("Binary of Int32 value is: '%b'\n", @Int32_Max); Printf("Binary of Int64 value is: '%B'\n", @Int64_Max); Printf("Binary of Float value is: '%b'\n", @Float_Max); Printf("Binary of Double value is: '%B'\n", @Double_Max);
// Printing a binary $variable
$binary = BinaryFromStr("Hello World!"); Printf("Binary variable to Hex = '%X'\n", $binary); Printf("Binary variable to Hex (with spaces) = '%3X'\n", $binary); Printf("Binary variable to Chars = '%c'\n", $binary); Printf("Binary variable to Numbers = '%d'\n", $binary); Printf("Binary variable to String = '%S'\n", $binary); // Prints // Binary variable to Hex = '48656C6C6F20576F726C6421' // Binary variable to Hex (with spaces) = ' 48 65 6C 6C 6F 20 57 6F 72 6C 64 21' // Binary variable to Chars = 'Hello World!' // Binary variable to Numbers = '72101108108111328711111410810033' // Binary variable to String = 'Hello World!'
Example of using %V
say "Now singles"; Printf("Value is: '%V' ok\n", (char)65); Printf("Value is: '%V' ok\n", null); Printf("Value is: '%V' ok\n", true); Printf("Value is: '%V' ok\n", false); Printf("Value is: '%V' ok\n", @SBYTE_MAX); Printf("Value is: '%V' ok\n", @BYTE_MAX); Printf("Value is: '%V' ok\n", @INT16_MAX); Printf("Value is: '%V' ok\n", @INT32_MAX); Printf("Value is: '%V' ok\n", @INT64_MAX); Printf("Value is: '%V' ok\n", @UINT16_MAX); Printf("Value is: '%V' ok\n", @UINT32_MAX); Printf("Value is: '%V' ok\n", @UINT64_MAX); Printf("Value is: '%V' ok\n", @FLOAT_MAX); Printf("Value is: '%V' ok\n", @DOUBLE_MAX); Printf("Value is: '%V' ok\n", "Hello"); say "Now arrays"; Printf("Value is: '%V' ok\n", array((char)65, (char)'a')); Printf("Value is: '%V' ok\n", array(null, null, null)); Printf("Value is: '%V' ok\n", array(true, false, (bool)1, (bool)0)); Printf("Value is: '%V' ok\n", array((sbyte)77, (sbyte)11, (sbyte)22)); Printf("Value is: '%V' ok\n", array((byte)100, (byte)200, (byte)202)); Printf("Value is: '%V' ok\n", array((int16)777, (int16)778, (int16)778)); Printf("Value is: '%V' ok\n", array((int32)1337, (int32)7331, (int32)1373)); Printf("Value is: '%V' ok\n", array((int64)131, (int64)121, (int64)141)); Printf("Value is: '%V' ok\n", array((uint16)1, (uint16)2, (uint16)3)); Printf("Value is: '%V' ok\n", array((uint32)111, (uint32)222, (uint32)333)); Printf("Value is: '%V' ok\n", array((uint64)1110, (uint64)2220, (uint64)3330)); Printf("Value is: '%V' ok\n", array((float)777.77, (float)777.11, (float)777.22)); Printf("Value is: '%V' ok\n", array((float)42.77, (float)42.11, (float)42.22)); Printf("Value is: '%V' ok\n", array("Hello", "World", "ok")); say "Now arrays with separator"; Printf("Value is: '%V' ok\n", array(@Sep => ", ", (char)65, (char)'a')); Printf("Value is: '%V' ok\n", array(@Sep => ", ", null, null, null)); Printf("Value is: '%V' ok\n", array(@Sep => ", ", true, false, (bool)1, (bool)0)); Printf("Value is: '%V' ok\n", array(@Sep => ", ", (sbyte)77, (sbyte)11, (sbyte)22)); Printf("Value is: '%V' ok\n", array(@Sep => ", ", (byte)100, (byte)200, (byte)202)); Printf("Value is: '%V' ok\n", array(@Sep => ", ", (int16)777, (int16)778, (int16)778)); Printf("Value is: '%V' ok\n", array(@Sep => ", ", (int32)1337, (int32)7331, (int32)1373)); Printf("Value is: '%V' ok\n", array(@Sep => ", ", (int64)131, (int64)121, (int64)141)); Printf("Value is: '%V' ok\n", array(@Sep => ", ", (uint16)1, (uint16)2, (uint16)3)); Printf("Value is: '%V' ok\n", array(@Sep => ", ", (uint32)111, (uint32)222, (uint32)333)); Printf("Value is: '%V' ok\n", array(@Sep => ", ", (uint64)1110, (uint64)2220, (uint64)3330)); Printf("Value is: '%V' ok\n", array(@Sep => ", ", (float)777.77, (float)777.11, (float)777.22)); Printf("Value is: '%V' ok\n", array(@Sep => ", ", (float)42.77, (float)42.11, (float)42.22)); Printf("Value is: '%V' ok\n", array(@Sep => ", ", "Hello", "World", "ok"));